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Abstract-The plastic waves in rate-independent, isotropically work-hardening media obeying the von Mises
yield condition generated by radial stress uniformly applied at a circular cavity of radius r = ro, are studied.
Both plane stress and plane strain motions are considered. The radial stress and its time derivative at the
cavity may be discontinuous at time t = to. If the applied radial stress is continuous while its time derivative is
not, the discontinuity at (ro, to) propagates into r > ro along the characteristics and/or the elastic-plastic
boundaries. If the applied radial stress itself is discontinuous, the discontinuity in stress may propagate into
r> ro in the form of a shock wave, or a pseudo centered simple wave, or a combination of both. This is a
systematic study on the nature of solutions in the neighborhood of (ro, to) for all possible combinations of
discontinuous loadings applied at (ro, to). The special cases of linear work-hardening and perfectly-plastic
media are also discussed. Finally, the corresponding problem for materials obeying the Tresca yield condition
is studied briefly.

1. INTRODUCTION
It appears that very little has been done on axisymmetric cylindrical waves in a thin plate or in an
infinite medium of elastic, isotropically work-hardening material due to an applied radial stress at
a circular cavity; although the corresponding problem for specialized materials such as elastic,
and elastic perfectly-plastic media have been studied.

For waves in a thin plate in which the stress state can be considered as plane stress,
Kromm [1], Plass and Ellis [2], and Chou and Koenig [3] studied the case when the plate is elastic.
Cristescu [4] derived the expressions for plastic wave speeds in a thin plate using three different
constitutive relations. He considered the general case in which the shear stress (JrlJ is non-zero
but did not discuss the solutions of the governing equations.

For radial waves in a thick walled tube of infinite length in which the state of strain is plane
strain, Agababian[5] studied the case when the material is perfectly-plastic and obeys the Tresca
yield condition. The authors's assumption of elastic incompressibility greatly simplifies the
problem, and makes it possible to derive an ordinary differential equation for the position of the
loading boundary. In another paper [6], he considered the same problem without assuming elastic
incompressibility. He used a total deformation theory and assumed that the maximum shear
stress is equal to «(JBB - (J" )/2. Bronskii [7] obtained a closed form solution for the velocity of the
inner surface of a thick-walled tube subjected to an internal gas pressure. The material is
assumed to be incompressible and elastic, perfectly-plastic, satisfying the Tresca yield condition.
Stepanenko[8] studied the same problem assuming that the inner surface was given a uniformly
distributed impulse. Cristescu [9] derived the characteristic wave speeds for the cylindrical waves
in elastic, perfectly-plastic materials. Again, he considered the general case (JrB ¥ 0, but did not
discuss the solutions of the governing equations.

From the experimental point of view, it is clear that there are technical difficulties in
generating plane stress waves in a thin plate. By contrast, plane strain waves in a hollow cylinder
are relatively simpler to obtain as can be seen from numerous published results. For example,
Ensminger and Fyfe [10] devised an experiment aimed at the evaluation of constitutive models.
Their experimental technique involved the generation of plane strain plastic waves propagating
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radially from the center of a hollow cylindrical specimen. Fyfe[ll) made a comparison between
the experimental results and the theoretical predictions of a rate-independent plasticity theory for
an aluminum alloy. This theory is based on a generalized form of the Koehler-Seitz bilinear
model. The plastic wave speed is constant and the solution is obtained by a numerical integration
along the straight line characteristics. The theoretical predictions did not agree well with the
experimental results; and an elastic, viscoplastic theory was used in a subsequent paper[12]. It
was concluded that while certain forms of rate-dependent theory predict the experimental results
for certain ranges of stress and strain rate, the elastic, viscoplastic model is not necessarily the
only possible model. More discussions on rate effects in plastic wave propagation can be found in
recent works by Malvern[13) and Clifton[14]. Finally, we mention the paper by Duffey[15] in
which the transient response of a uniformly expanding, impulsively loaded, thin-walled cylinder
is obtained for an elastic, perfectly-plastic material. Because of the assumption that (J'rr = 0 and
that the change in the wall thickness is negligible, the problem is simplified.

For an elastic material, a unified theory such as the one by Chou and Koenig [3) can be used to
treat plane stress waves and plane strain waves simultaneously. Unfortunately, this is not
possible for elastic-plastic materials unless a drastic assumption is made, such as the one made by
Mehta[l6) who assumed that (J'zz =En =0 for both plane stress and plane strain waves.
Nevertheless, the results presented here show that, in most cases, a single expression can be used
for both plane stress and plane strain solutions.

In this paper, we present the solutions of cylindrically symmetric waves near the inner
circular boundary due to a uniformly distributed radial stress at the circular cavity. The applied
radial stress can be continuous or discontinuous. The material is assumed to be rate-independent,
elastic, isotropically work-hardening and obeying the von Mises yield condition. Basic equations
for cylindrical waves of plane stress and plane strain are derived in Section 2. The solutions for
plane stress waves are presented in Section 3. Since the analysis is similar to that of spherical
waves [17), it is presented briefly here. It should be mentioned however that while the plastic
wave speed is a function of the yield stress for the spherical waves, it is a function of all stress
components for the cylindrical waves. The cases of plane strain waves are presented in Section 4.
We see that most solutions in Section 3 can be used for Section 4 if the variables are redefined. In
Section 5, the special cases of linear work-hardening and perfectly-plastic solids are discussed.
Finally, plastic waves in solids obeying the Tresca yield condition are investigated in Section 6.

2. BASIC EQUATIONS FOR CYLINDRICAL WAVES

When the waves are cylindrically symmetric, the equation of motion is

(J'rr.r + «(J'rr - (J'",,)lr = po (2.1)

where (J'rr and (J'"" are the radial and circumferential stresses, v is the radial particle velocity, p is
the mass density, r is the radial distance. The comma and dot denote partial differentiation on r
and time t, respectively. If Err and E"" are the radial and circumferential strains, the material
continuity requires that

Eaa = vIr. (2.2)

We will use the von Mises yield condition and the associated flow rule. Let

(2.3)

where (J'lj is the stress tensor. The plastic yield is reached if

(2.4)

where k > 0 is the yield stress whose magnitude depends on the previous work-hardening history.
The stress-strain relation for isotropic work-hardening materials can be written as (Hill [18]),

. 1+ II . II "'. G at at .
Eij = -E (J'ii - E UijeJ'kk + -a.. -a- (J'pq

tTl) U pq

(2.5)
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where E is Young's modulus, II is Poisson's ratio and G > 0 is a known function of k. G = 0 in the
elastic region. By considering the special case of uniaxial stress-strain relation in which a and E

are the longitudinal stress and strain, respectively, eqn (2.5) is reduced to [19],

G(k) = _3_( 1 1)
4eE (3(v(3i(j)

where {3 is a function of v(3i(j and is given by

(2.6)

(2.7)

In the elastic region {3 = 0; while in the plastic region 0< {3 :5 1. In the plastic region, we assume
that {3 is a strictly decreasing function of (T, although the cases of linear work-hardening
({3 =constant) and perfectly-plastic solids ({3 =0) are discussed in Section 5.

3. PLANE STRESS WAVES

3.1 Introduction
For cylindrically symmetric waves in which a plane stress state exists, the only non-zero

stresses are arr and aee. For simplicity, we will write

p = am (3.1)

The yield function eqn (2.3) then becomes

f
1 2 2

= -(p +q - pq)
3

and eqn (2.5) reduces to, after using eqns (2.2) and (2.6),

where

(3.2)

(3.3)

(3.4)

1
Se = - (2q - p)

3
(3.5)

Equations (2.1), (3.3) and (3.4) can now be written in the form of the matrix differential equation

Aw+BW,r =IFw (3.6)r

where

v p 0 0

w= p, A= 0 ~{l+~ Sr2(~-I)/e} k{ - II +~Srse(~-1)/e}
q 0 ~{ -1I+~Srse(~-I)/e} ~{l+~Se2(~-I)/e} (3.7)
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The characteristic wave speeds C of eqn (3.6) are the roots of

IIcA- BII = 0

which yields c = O. ± Cp in the plastic region where

{
E }112

CL = p(l- v 2)

s=(2-v)p-(I-2v)q

(3.8)

(3.9)

(3.10)

(3.11)

In the elastic region f3 = I and the roots are 0, ± CL. Notice that Cp = CL also when 5 = 0
regardless of the value of f3.

The left eigenvector I and the right eigenvector r. defined by

(cA- B)r = 0, (3.12)

are identical for the present problem because A and B are both symmetric. For C = CL, Cpo we
have

_ + (I - f3 )(p - 2q )5
if;(f3)-v 12f3f+(1-f3)(p-2q)'

Notice that if; = v when f3 = I, or p = 2q, or 5 = O.
For c':I O. the total derivative of W along a characteristic is

(3.13)

(3.14)

ddWI =W,r +l-w.
r , C

(3.15)

Elimination of W,r between eqns (3.15) and (3.6) yields

(cA- B)w = C('!'FW- Bdwi ).
r dr ,

The characteristic condition is obtained by applying eqn (3.12d:

If A is the speed of an elastic-plastic boundary, it was shown in [20] that

jP _IIAA e
- BII

r -IIAAP
- BII'

(3.16)

(3.17)

(3.18)

where the superscripts e and p denote evaluation in the elastic and plastic regions, respectively.
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We will write A = Ca for an unloading wave and A = c, for a loading wave. If j' and jP are not
both zero, it can be shown that[21, 22]

(3.19)

3.2 Continuous loading

Consider a circular cavity of radius ro in an infinite medium which is subjected to a prescribed
radial stress p (ro, t) at the cavity along with prescribed initial conditions, such as p (r, 0), q (r, 0),
and v (r, 0). Suppose that p (ro, t) is continuous with respect to t except at t = to when p (ro, t) or
its time derivative p(ro, t) may be discontinuous. We will study the nature of the solution in the
neighborhood of r = ro, t = to. In this section we consider the cases in which p (ro, t) is
continuous while p(ro, t) may be discontinuous at t = to. The cases in which both p(ro, t) and
p(ro, t) are discontinuous at t = to will be considered in Section 3.3.

Without loss of generality we take to = 0 and assume that the solution for r ~ ro, t :5 - 0 has
been obtained. The discontinuity at (ro, 0) will in general propagate into the region r> ro, t > 0
along more than one line and divide the neighborhood of (ro, 0) into several regions bounded by
the lines of discontinuities (see Fig. 1). Each region will be denoted by a, b or m, etc. with a and b
reserved for the uppermost and lowermost regions, respectively. Any quantity with superscript a,
b, m, ... stands for the limiting value of that quantity in that region with (r, t) approaching (ro, 0). In
particular

pb = lim p(ro, t),
t-+-O

(3.20)

and hence p a and p b are the values of p (ro, t) just "after" and "before" t = 0, respectively. Of
course we are assuming that there is no line of discontinuities converging from r > ro, t < 0
towards (ro, 0). In the present section, p (ro, t) is assumed to be continuous at t = O. Consequently

(3.21)

r;,

A.3 c">e.- ,J (Il> 0

r;,
A.5 C·<CL JUl>O,

A.2 J(Ff) < 0

A.6 C"<CL, J(I) < 0

Fig. I. p. =p', and f' =k"'. (E and P stand for "elastic" and "plastic" regions, respectively.)
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We will also use the superscript 0 on quantities such as the speed of the elastic-plastic boundary to
indicate the limiting value of that quantity at (ro, 0).

The solution in the neighborhood of (ro, 0) depends on the given values ph and pa as well as
on whether the region b is plastic or elastic. There are six possible cases as shown in Fig. I. The
analysis is similar to that of[17, 23] and hence is presented briefly here. The solid lines are the
lines of discontinuity while the dotted lines are given in the figures for the purpose of showing the
relative positions of the solid lines. There is no discontinuity across the dotted lines. E and P
stand for elastic and plastic regions, respectively.

In all six cases, the radial stress p is continuous. It can be shown by the conservation of
momentum that the velocity v is also continuous. By applying eqn (3.4) to both sides of a line of
discontinuity r, we obtain

(3.22)

where [*] stands for the difference in the values of * on the two sides of r. If r is a characteristic
both sides of r will be in the same state (i.e. elastic, or plastic) and hence (3 is the same on both
sides. Equation 0.22) then can be written as

[q] = [p]l/f(f3) (3.23)

where l/f(f3) is defined in eqn (3.14).
It should be noticed that eqn (3.22) applies not only to two regions which are adjacent to each

other. It also applies to two regions which are separated by another region such as regions a and
b in Cases A.3, A4 and A5 of Fig. I.

For Case AI, the region a is plastic. Hence ja > 0, or by eqn (3.2),

(3.24)

By applying eqn (3.23) to regions a and b, and eliminating qa from eqn (3.24), we obtain

J({3b»O

J(f3 b) = Sb(p a - p b) +r {3 + ({3\ -1)(p b - 2q b)2f(4fb)}

Therefore, if Pa, Pband qb satisfy the condition (3.25), we have Case AI.
For Case A.2, the region a is elastic and we have

(2p a _ q a)p a + (2q a _ p a)q a < 0

(3.25)

(3.26)

(3.27)

This reduces to the condition J({3b)<O when qa is obtained from eqn (3.22).
When the region b is elastic, we have to consider the maximum yield stress k*(r) ever

reached at each r for t < O. If the material has never been loaded into a plastic region for t < 0,
k*(r) is a constant and is equal to the initial yield stress. Let

0.28)

We will assume that

(3.29)

i.e. the stress state at (ro,O-) has reached a yield stress. Otherwise the discontinuity will
propagate along r = ro + cd and the problem is trivial. The elastic solution in region b can be
extended up to the elastic characteristic r = ro + cd provided the stress state remains elastic
throughout. To see if we can extend the elastic solution all the way up to r = ro + cd, we consider
the yield function f along any line r = ro + c*t. For small (r - ro), we have
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On the other hand,

If the yield stress is reached along r = ro + Clio t, we should have

or
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(3.30)

(3.31)

(3.32)

(3.33)

Hence, if Clio> CL, we have Cases A.3 and A.4. Otherwise, we have Cases A.5 and A.6. In Cases
A.3 and A.5, eqns (3.22) and (3.24) apply which yield the condition J(1) > O. J(1) is the value of
J({3b) defined in eqn (3.26) with (3b = I. Similarly, for Cases A.4 and A.6, eqns (3.22) and (3.27)
reduce to J(I) < O.

As can be seen from Fig. 1 where the conditions to be applied to each case are indicated, the
six cases are mutually exclusive. If the inequality condition which governs the case becomes an
equality, we have to consider the higher-order derivatives and employ an analysis similar to that
of [24] to determine which case the problem belongs to.

3.3 Discontinuous loading
In this section we will study the cases in which p a and p b are not equal. Thus, we have a

strong discontinuity in p (r, t) at (ro, 0). This strong discontinuity may propagate into the region
r > ro as a shock wave or spread out into something like a centered simple wave with center at (ro,
0). To analyze the singular nature of the solution near (ro, 0), we use the procedure by Ting[25]
and expand w in a power series in t:

A = (r - ro)/t,

(3.34)

(3.35)

where w(O), w(I), ... are functions of A only. If we substitute eqn (3.34) into eqn (3.6) and equate
coefficients of terms of the like powers in t, we obtain the differential equations for w(o>, w(l), ... in
a recurrence form. In particular, w(O) is governed by

d (0)

(AA(O)-B)~=O
dA '

Let c(O) be the positive root of

(3.36)

(3.37)

The solution of eqn (3.36,) depends on whether A = c(O) or not. We call a region "regular" if
A¢ c(O) and "singular" if A = c(O).

In the regular region, it is seen that w(O) is a constant vector.
In the singular region, dw(Ol/dA is proportional to the right eigen-vector r given by eqn (3.13),

and hence

in which the superscript (0) is omitted. The last equality gives

dq/dp = I/f.

IJSS Vol 11 No.9-I

(3.38)

(3.39)
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Since l/J as defined in eqn (3.14) is a known function of p and q, eqn (3.39) can be integrated
numerically once the function f3 is specified. Integration of eqn (3.39) yields a one-parameter
family of curves in the p - q plane, Fig. 2. The ellipse is the yield surface given in eqn (3.2). The
arrows show the direction along which (p, q) vary as A decreases. Inside the yield surface the
stress state can vary along either direction.

Although eqn (3.39) in general cannot be integrated analytically, the curves in Fig. 2 can be
sketched fairly accurately if the following observations are made. l/J in eqn (3.39) is the slope of
the curves and, by eqn (3.14), l/J = II when f3 = I, or p = 2q, or s = O. In Fig. 2 this means that the
slope is equal to II in the elastic region and along the lines MN and HD. The curves are symmetric
with respect to the origin O. l/J = 0 along the curve FGN which resembles a hyperbola with OF and
ON the asymptotes and G the vertex. Point G corresponds to p = q and f3 = (I +411rl. l/J < 0
inside the curve FGN, 0 < l/J < II in the region HDFGNM, and l/J> II in the region NMH'D'.

For linearly work-hardening (f3 = constant) and ideally plastic solids (f3 = 0), eqn (3.39) can be
integrated analytically. (See Section 5). If f3 is an arbitrary function of vOk), eqn (3.39) can be
integrated when II = 1/2. For, when II = 1/2 eqn (3,39) reduces to

(l- _1) dk = d(p - 2q)
f3 k (p - 2q)

(3.40)

The solution w(O) in the singular region resembles a simple wave solution and it would be a
simple wave solution if the right-hand side of eqn (3.6) were zero. For this reason, we call w(O) the
psuedo-simple wave solution. The solutions for w") in the singular region are not needed here.

3.4 Propagation of shock waves
If the discontinuous loading applied at r = ro is propagated into r > ro as a shock wave, the

speed of the shock wave will be the elastic wave speed CL even if the stress states just behind and
ahead of shock wave are plastic due to a sudden reversal in the loading. If we consider the
discontinuity across the shock wave as the limit of a continuous variation over an infinitesimal
interval, the state of stress within this interval is elastic. The discontinuity in w across the shock
wave which is denoted by [w] therefore satisfies the relation

[w]=yr e
, (3.41)

where y is a proportional factor which depends on the distance along the shock wave. From this

0 1

I II
I /1

0' 0./ I /
:'" c:./ I /

, _-,,"'/--;1-- / /
/ I

/ \ / ';<0
/ \G /

_----/7"-<-,-,-__~_:...~N
~~~

q

~~--+---~~::.----+--:;;>..-:::---- p

Fig. 2. Stress paths for pseudo-simple waves. (Plane stress and von Mises yield condition.)
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and eqn (3.13), we have

where

Also from eqn (3.41)
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(3.42)

(3.43)

(3.44)

[dW/ ] dy,dr Cr. = dr r,
,T [dw/] dyr B - =PCL-.

dr Cr. dr
(3.45)

Finally, we apply eqn (3.16) to both sides of a shock wave and subtract the results. We obtain,
after using eqns (3.14) and (3.451),

(3.46)

If we know y and dyldr, eqn (3.46) may be used to determine won one side of the shock wave if
won the other side is known. The differential equation governing y has different forms
depending on whether the region just before or after the shock is elastic or plastic. These cases
are discussed separately as follows.

(i) Elastic-elastic discontinuity. If we apply eqn (3.17) to both sides of the shock wave and
subtract the results, we obtain, after using eqns (3.41) and (3.452),

(3.47)

(ii) Elastic-plastic discontinuity. Ifwe substitute w' = wP + yr' intoeqn (3.17), we obtain,

(3.48)

The right-hand side of eqn (3.48) can be expressed in terms of IV and qP by using eqn (3.16) and
noticing that

(3.49)

Hence, eqn (3.48) can be written

(3.50)

(iii) Plastic-plastic discontinuity. In this case, r = rand eqn (3.42) reduces to

(3.51)

3.5 Cases of discontinuous loadings
We will divide the discontinuous loadings into several groups according to the relative

positions of (p b, q b) and (p", q") on a stress path shown in Fig. 2. With the exception of Group I,
each group has more than one case depending, among others, on the values of pb, qb and p". The
values of p\ qband p" are assumed to be given. If we apply eqn (3.4) to regions a and band
subtract the results, we obtain
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ja{3+ 4}a ({3la -I )(2q a - pa)2} = J({3b) (3.52)

J({3b) = sa(pa _ pb) + (2p a _ qa)pb + (2 q a _ pa)qb

+(~-I )(2qb - pb)(2q a - paW /(4t) + (2 q a - pa)E(v a - vb)/ro

(3.53)

and va - Vb is, by eqn (3.38),

(3.54)

Since (p, q) follows a stress path in Fig. 2, c in eqn (3.54) depends on p only. Equation (3.52)
provides the solution for qa. Notice that J({3b) reduces to J({3 b) of eqn (3.26) when p a = p b.

If region a is plastic, j" > 0 and hence J({3 b) > 0 by eqn 0.52). This condition applied to
Groups II, III and V. In contrast, J({3 b) < 0 applies when region a is elastic in Groups II, III and
V.

Group I
In this group, the stress state in both regions a and b is inside the yield surface. Hence,

r < k
Q2 (3.55)

The jump from p b to p a can be from point C to C' or from C' to C in Fig. 2. Since

eqn (3.552) becomes

or

(3.56)

(3.57)

(3.58)

(3.59)

Equation (3·58) gives the condition to be satisfied for this group in addition to eqn (3.55 1). The
discontinuity is propagated along CL, Fig. 3. The double lines stand for the shock wave. Equation
(3.47) applies to this case which, upon integration, gives

(3.60)

Fig. 3. Group I: fb < k ol
, 128 2(p. - pb) + Sb1< tl.. (Double lines stand for shock wave.)
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where 'Yo is obtained by using eqn (3.42). Since 'Y as given by eqn (3.60) does not vanish for finite
r, the shock wave does not disappear at a finite distance.

Group II
In this group, the jump from p b to P Q is from point C or C' which is inside the yield surface to

point A or A' which is outside the yield surface in Fig. 2. Mathematically, this kind of
discontinuity is expressed by eqn (3.55,) and

(3.61)

There are four cases in this group and are shown in Fig. 4. S stands for the singular region
which is always plastic. If the singular region is bounded from below and above by plastic
characteristics, Cp of course has different values at the upper boundary from those of the lower
boundary. In all four cases, the stress state (p", q") is equivalent to point B or B' in Fig. 2. Hence,

(3.62)

/ 1I.1\I1.2
A..

P E Cu P

5 C.(

E CL

II. I ' 0 <0 ,J 1I) >0
11.2'0<0 ,J(I)< 0

r. _
11.3' 0>0. J(1l >0
11.4' 0>0. J<I)<O

Fig. 4. Group II: r < k02
, 128'(p a - p") + s"1 >~. (5 stands for "singular" region.)

In Cases 11.1 and 11.2, the region n is elastic. This means that

It can be shown that (see [17]) this condition is equivalent to Q<0 where

Q 3{(dfl)b d k02} " b{(dSI)b Sb (52" b}= - --() +(p -p) - ----(p -p )
dr Cj. dr dr Cr. 2ro ro

(3.63)

(3.64)

Similarly, it can be shown that Q> 0 for Cases 11.3 and 11.4 when the region n is plastic.

Group III
In this group, the jump from pb to pQ is from point B (or B') which is at a yield surface to

point A (or A') which is at a higher yield surface, Fig. 2. Mathematically, this is given by the
following two conditions:

(3.65)

It is interesting to notice that if (p b, q b) is at the point H in Fig. 2, then regardless of the value
of p Qthe stress state (p D, q Q) will be at a higher yield surface. Hence, if S b = 0, PQis arbitrary for
Group III. The analysis of this group is omitted here but the results are shown in Fig. 5.

Group IV
In this group, the jump from p b to P D is either from point B to C or C', or from point B' to C

or C', Fig. 2. Mathematically, this is given by eqn (3.65d and

(3.66)
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/

111.1____

1I1.2-C-C
I U P

P E
s

P
b

f.

111.1. J(pb) >0
111.2. J(pb) < 0

r.
111.3· C">CL.J(I) >0
111.4· C'>CL,J(I)< 0

/

111.5
11I.6~

I Cu Cp
P E

S Cp

E <;.

r.
111.5 ,c"< CL,J(I) >0
111.6· c"< CL,J(I) < 0

Fig. 5. Group III: t = k"'and(i)(p" -p"l/s" >O,if s"tO.(iilp" arbitrary,ifs" =0.

If region b is plastic, we have Case IV.I, Fig. 6. The propagation of shock wave is obtained by
integrating eqn (3.50). Unlike the case of the elastic-elastic shock wave in Group I, the
plastic-elastic shock wave in general disappears at a finite distance. If region b is elastic, we have
Cases IV.2 or IV.3 depending on whether c* § CL.

Group V
In this group, the jump from p b to p a is either from point B to A' or from point B' to A, Fig. 2.

This is expressed by eqn (3.65,) and

(3.67)

As shown in Fig. 7, there are twelve cases in this group. All singular regions in this group involve
a "reversed plastic" loading. The region n is characterized by the relation

(3.68)

In Case V.l and V.2, the region n is elastic. This means that

It can be shown that this is equivalent to R b > 0 where

R b=~+~ (dSI )b +p{j2CL(~_I) i:
2ro s dr 'I. 8E {3 f

By a similar argument, R b <0 applies to Cases V.3 and VA.

(3.69)

(3.70)
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1Y.3' r: <CL

Fig. 6. Group IV:r : ko'-, 0> (p. - p" lis' > - 1/8', s",. o.
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p
'---o::;............--....r

r.
VI' Rb>O ,J</bO
V.2' Rb>O, 'J(pb) <°

r••
V.5' C ><;" R"'>O,'J(II>O
y'6'c">Cl , Rm>O,J(I)<O

r.

V.3' R
b<0, J(IP I >°

V.4' Rb<O,'J(pb l <°

r.
V.7' C· >~,R~ O,J(t) >0

v.a,c">S!~ <O,'J(lk 0

r.
V.9 ,c"<G.,lk°,J(l) >0
V.IO'c"<'1!0 <O,J(I) <°

t

r.

V.II' C<G.,Q >0, a{l) >0
Y.12,C<G.,Q >o,Jm <0

Fig. 7. Group V: f' : ko'-, (pa - p")ls' < -1/8', s",. o.
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For Cases V.5 through V.8, the region b is elastic and c*> CL. Hence C* ::;: CIO. If we ignore
region b, Cases V.5-V.8 are identical to Cases V.l-V.4. Therefore, instead of the condition
R" ~ 0, we have the condition R m

~O. To obtain R m,pm and qm are determined from eqn (3.18)
and (3.22) while p~r and q~r are determined by the continuity condition along c*:

pm +C*p~r::;: p" + C*p~r

qm +C*q~r ::;: q" +C*q~r

(3.71)

(3.72)

For Cases V.9-V.l2, the region b is elastic and c* < CL. These are actually special cases of
Group II in which (p", q") is at the yield surface. Hence, if we use eqn (3.68), we obtain the
condition Q~ 0 where

Q::;: 3{(dfl )" _.!(kjZ}_;;{(dSI )" +£}
dr CL dr 8 dr CL 2ro

Groups II' and V'
These are limiting cases of Groups II and V. In Group II, if

all the singular regions in Fig. 4 disappear. Similarly, if

(3.73)

(3.74)

(3.75)

all the singular regions (which have the reversed plastic loading) in Fig. 7 disappear. For cases,
such as 11.2, V.2, V.6 and V.IO, there is no trace left by removing the singular region. In others,
such as 11.3, V.3, V.7 and V.lt, the singular region reduces to a single curve which is a plastic
characteristic curve. The singular region in the remaining cases either reduces to an unloading
boundary or a loading boundary whose initial speed cannot be obtained by a limiting process. The
initial speed of these boundaries has to be determined by using eqn (3.18). Similar situations
happen in the problems of discontinuous loading of thin-walled circular-cylindrical tubes studied
in [25]. In any case, there are exactly four cases for Group II' and twelve cases for Group V'. All
conditions obtained in Group II and V as indicated in Figs. 4 and 7, apply equally well to Group
II' and V'.

4. PLANE STRAIN WAVES

4.1 Introduction
For cylindrically symmetric waves in which a plane strain state exists, Ez ::;: O. The only

non-zero stresses are (J'm (J'(J(J and (J'zz. We will use the notations:

n ::;: (Izz (4.1)

The yield function (2.3) for this case becomes

(4.2)

(4.3)

The stress-strain relation, eqn (2.5), can be written as, after using eqns (2.2), (2.6) and noticing
that Ez = 0 for a plane strain motion,

Ev" = p - v(q + 1i)+~(~-1 )Sr(SrP + Seq + szli)/e

E;::;: q - pep + Ii) +~(~-1 )se(s,.p + Seq + Szli )/e

0= Ii - pcp + q) +H~-l}Sz(SrP+ Seq + szn)/k 2

(4.4)

(4.5)
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s'=3'(2p - q - n)

Se = ~(2q - n - p)

1
sZ=3(2n-p-q)
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(4.6)

Equations (2.1), (4.3), (4.4) and (4.5) can be written in the matrix differential equation form, eqn
(3.6), with

pm [' OOJ0** *
A= 0 * * *

0** *
(4.7)

[~
-1 0

i] F= ~
1 -1

ij
0 0 0 0

b=
0 0 0 00

0 0 0 0 0

where the non-zero elements of A are indicated by * which can be obtained by a direct
substitution.

It should be noted here that, with the change of variables:

(7", = (2p - q - n)!v'(6), (7"2 = (q - n)/v'(2), (7"3 = (p +q +n)/v'(3),

p =(2(7", +v'(2)(7"3)!v'(6), q =(-(7", +v'(3)(7"2 + v'(2)(7"3)!v'(6),

n = (-(7", - v'(3)(7"2 +v'(2)(7"3)/v'(6), (4.8)

eqn (4.2) can be reduced to

f = «(7"/+ (7"/)/2,

In which (7"3 is absent. (7"3 is also absent in the following relations:

(4.9)

(4.10)

The characteristic wave speeds c as defined in eqn (3.8) are c =0, 0, ± Cp in the plastic region
where

{
2(1- 2v)(1- /3)0'/ }1/2

Cp =c, 1 (1- v){2(1 + v){3 + 3(1- /3)}«(7",z + (7"/)

{
E(1-v) } 1/2

c,= p(l+v)(1-2v)

(4.11)

(4.12)

In the elastic region, {3 = 1 and c =0, 0, ±c,.
The left and right eigenvectors as defined in eqn (3.12) are again identical in this case. We

have, for c = c, or Cp ,

[1]r= -pc
-pel/!
- pcel>

(4.13)
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(4.14)

(4.15)

4.2 Continuous loading
The analysis is similar to that of plane stress waves discussed in Section 3.2. It can be shown

that Fig. I applies also to the plane strain waves provided we replace CL in Fig. I by C 1 and define

C* in Fig. 1 is defined in eqn (3.33).

4.3 Discontinuous loading
The stress paths for "pseudo simple waves" (see Section 3.3) for the plane strain waves can

be shown to be governed by the following differential equations:

dU3 1+v 2(l+V)+3(i- 1)

dUI == y(2)(1 - 2v) 2(1 + v) + 3(i I )o}!(U\z + u/)

These two equations can be shown to be equivalent to

dU 2+_3_(-l_I)dk== 0
U2 2(1 + v) (3 k

d{Y(2)O- 2v) _ } _ y(Ze- u/) d
1+ V U3 UI - Uz Uz

(4.17)

(4.18)

(4.19)

(4.Z0)

Therefore, instead of the (p, q, n) space, we will use (uJ, U2, (3) space to describe the stress
paths, Fig. 8. The stress paths are projected on the (uJ, uz) plane and (uJ, (3) plane. In the (UI, uz)
plane, the stress paths are symmetric with respect to the UI and Uz axes. In the (UI, (3) plane, they
are symmetric with respect to the origin. Actually, there are two-parameter family of curves in
the (uJ, (3) plane. Only one-parameter family of curves is shown because the other family can be
obtained by translating the curves along the U3 axis. From eqn (4.8), the U3 axis makes equal
angles with the p, q, n axes. Moreover, the UJ, U3 and p axes are on the same plane. The relations
between (u, Uz, (3) and (p, q, n) coordinates are given by eqn (4.8) and are illustrated graphically
in Fig. 8.

4.4 Propagation of shock waves
If the discontinuity in the loading at r == ro is propagated into r > ro as a shock wave, it can be

shown that eqns (3.47), (3.50) and (3.51) remain valid for plane strain waves provided we replace
CL by CI and define

8 ==(l-2v)!(1-v), (4.21)
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(0) (b)

Fig. 8. Stress paths for pseudo-simple waves. (Plane strain and von Mises yield condition.)

4.5 Cases of discontinuous loadings
Again, the analysis is similar to that of Section 3.5. In fact the results show that Figs. 3-7 with

conditions applied to each case as indicated in the figures remain valid provided we use the
definitions of sand 5 given by Eq. (4.21) and redefine J by

(4.22)

p.

(4.23)

Thus, ~, Q, (p n - pb), R\ Q as defined in eqns (3.58), (3.64), (3.62), (3.70) and (3.73) remain valid
if we use the definition of sand 5 given by eqn (4.21). Of course, CL in Figs. 3-7 has to be
replaced by CI.

5. LINEAR WORK-HARDENING AND PERFECTLY-PLASTIC SOLIDS

The analysis presented in the previous sections can be modified to include linear
work-hardening materials (f3 = constant) and perfectly-plastic solids (f3 = 0; jP = 0). For the
latter material the value of lim r If3 is obtained from eqns (3.2)-(3.4) for plane stress waves and

13-+0

eqns (4.2)-(4.5) for plane strain waves. The most significant modification concerns the
stress-paths for pseudo-simple waves.

5.1 Plane stress waves
For linear work-hardening solids the stress paths of Fig. 2 will have the new property that they

have the same slope along any radial line passing through the origin. This follows from eqn (3.39)
in which IjJ is a function only of (p Iq). Equation (3.39) can be integrated analytically (see [26]).

For perfectly-plastic solids, the yield surface is invariant and the stress paths coincide with
the yield surface. This is seen from eqn (3.14) as IjJ becomes identical to the slope of the yield
surface at all points. For a valid pseudo-simple wave solution, the state of stress must traverse the
yield surface in the direction of decreasing Cpo Figure 9 shows the admissible directions for the
change of stress state as Cp decreases. From Fig. 9, we see that

(5.1)

where ky is the constant yield stress.
If the values of (p, q) for t < 0 correspond to point A, Fig. 9, any discontinuous increase in p
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q

o
4/
/

of

I
I

I

Fig. 9. Stress paths for pseudo-simple waves in perfectly-plastic solids. (Plane stress and von Mises yield
condition.)

causes the state of stress to traverse the yield surface toward point B while any discontinuous
decrease in p causes an unloading via the line of slope II passing through A. A similar situation
holds for point C. But if the initial state corresponds to point D, any arbitrary discontinuous
change in p results in plastic response. On the other hand, if the initial state corresponds to point
B, any change in p has to be a decrease and we can have unloading only.

5.2 Plane strain waves
For linear work-hardening solids the stress paths of Fig. 8(a) become similar and the

differential equation governing the stress paths can be integrated analytically, [26].
A special case arises when q = n, or (J'2 = O. This case is of particular interest because it arises

when the medium is initially at rest and stress free and is subjected to a discontinuous pressure.
From eqn (4.11) we see that Cp is a constant since {3 is a constant and (J'2 =O. From Fig. 8(a), we
see that the stress path for this case is the line (J'2 =O. This is the only case of cylindrical waves in
which a part of the discontinuity (p a - p b) may propagate, initially at least, as a plastic shock
wave across which w is discontinuous. But since it may not be possible to maintain the condition
q = n for any length of time. this shock wave may degenerate into weak discontinuity waves in
the neighborhood of r = roo

For perfectly-plastic solids, the yield surface is a circular cylinder of radius y(2)ky , where ky

is the constant yield stress. The stress paths now lie on the surface of this yield surface. Figure 10
shows the projections of these stress paths. The projections of the stress paths on the (J'\ ~ (J'2

plane coincide with the projection of the yield surface. The stress paths in this case constitute a

p

(0)

r
+----,l4~-~---;l'L--"L---+-"j

(b)

Fig, 10, Stress paths for pseudo-simple waves in perfectly plastic solids, (Plane strain and von Mises yield
condition,)
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one-parameter family of curves and their projections on the U'l - UJ plane may be obtained by
translating anyone of them along the UJ axis.

6. SOLIDS OBEYING TRESCA YIELD CRITERION

Since we do not know a priori which of the principal stresses are maximum and minimum, we
define f as,

where

nt=sgn(p-q), nz=sgn(q-n), nJ=sgn(n-p).

Then Tresca yield criterion is given by

f=e.

(6.2)

(6.3)

The quantities n" nz and nJ must satisfy one of the following equations depending on the location
of (p, q, n) in the stress space:

Region I: ntnz=-nZnJ=-nJnl=!
Region II: nZnJ = - n3nt = - nlnz = !
Region III: nJnl = - n,nz = - nZnJ = !

(6.4)

Thus we will have three possible cases. For each case, we can derive the basic equations as in
Section 2 by replacing f of eqn (2.31) by that of eqn (6.1). While Fig. 1holds good for each of the
above three cases, we have to derive the conditions governing them. Since this procedure is
exactly the same as that of Sections 3.2 and 4.2, we omit these details.

The cases arising due to discontinuous loading can be obtained by an analysis similar to that
of Sections 3.3, 3.4 and 3.5. The essential difference is in the pseudo-simple wave solution.
Omitting all other details we briefly describe this aspect only.

6.1 Plane stress waves
Figure 11 shows the schematic diagram of stress paths for pseudo simple waves. Inside the

yield surface, the stress paths are lines of slope II. Outside the yield surface, we divide the
stress-space into three regions according to eqn (6.4). The stress paths in region I are lines of
slope II as those inside the yield surface. The stresses may traverse only in the outward direction

p.q
/

/

Fig. 1I. Stress paths for pseudo-simple waves. (plane stress and Tresca's yield condition.)
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as indicated by the arrows. In region II, the stress paths are curves and their slopes which are
always positive, approach v as f3 ~ 1 and I as f3 ~ O. The stress paths in region III are curves and
their slopes which are always positive also approach v as f3 ~ I but approach 0 as f3 ~ O. It may
be noted that the slope of the stress paths may be discontinuous along the lines p = 0, q = 0 and
p = q.

6.2 Plane strain waves
Figure 12 shows the projections of the stress paths on the at ~ a2 and at ~ a3 planes, where

a" a2 and a3 are defined by eqn (4.8). The yield surface in this case is a hexagonal cylinder with
its axis coinciding with the a3 axis. Referring to Fig. 12(a), we divide the stress space outside the

./
./

./

--

(0) ( b)

Fig. 12. Stress paths for pseudo-simple waves. (Plane strain and Tresca's yield condition.)

yield surface into regions according to eqns (6.4). In region I, the slopes of the projections of the
stress paths on at ~ a2 plane and at ~ a3 plane depend on f3 only. In the at ~ a2 plane, the slope
varies from - 00 to -l/y(3) as f3 decreases from 1 to O. In the at ~ a, plane it varies from
y(2)(1 - 2v )/(1 + v) for f3 = I, to (1 - 2v)/2y(2)(1 + v) as f3 ~ O. The projections of stress paths
in region II are mirror images of region I with respect to the at axis. The stress paths in region III
are lines, the projections of which are parallel to the al axis in the at ~ a2 plane and have the
slope of y(2)(1 - 2v )/(1 + v) in the al ~ a3 plane. Since Cp = c t in this region, the stress paths in
this region are indistinguishable from those inside the yield surface. As in the case of plane stress,
the slope of the stress paths may be discontinuous where they intersect the lines at = ±a2!y(3).

CONCLUDING REMARKS

The results presented here enable one to determine exactly what kind of waves one would
obtain for a given loading which has some kind of discontinuities. The solutions are exact
solutions near the point of discontinuity. Since the theory assumes that the material is
rate-independent, the results obtained here do not apply to rate-sensitive materials. This is
particularly so in the cases where the discontinuity involves a sudden change in the load applied
at the cavity. In the plastic region this implies infinite strain rate, and hence the effect of
rate-sensitivity cannot be ignored no matter how small the rate-sensitivity is. In the latter cases,
the solutions obtained by the present anslysis can be regarded as an approximate solution in some
region near, but not adjacent to, the cavity.
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